Current Approaches Enhancing the Elimination of Dendrite Formation in Batteries

Authors

  • LEONG WANG Faculty of Mathematical and Physical Sciences, University College London, UK

DOI:

https://doi.org/10.54097/xhjz6s18

Keywords:

Dendrite growth; Battery; Material.

Abstract

Dendrite formation poses a substantial challenge to the advancement of high-energy-density batteries, especially those utilizing lithium-metal anodes. Irregular metal deposition throughout successive electrochemical cycles causes acicular dendrite formation, causing internal short circuits, diminished capacity, and significant safety risks, including thermal runaway. This paper analyses the essential mechanisms of dendrite nucleation and development, their implications in lithium-metal, lithium-sulfur, lithium-air, and sodium-based batteries, and contemporary tactics for suppression. Strategies encompass the development of sophisticated electrolytes, the alteration of anode surfaces, and the use of nanotechnology to improve separator efficacy and solid electrolyte interphase (SEI) stability. Along with the recent significant progress exhibiting feasible approaches towards dendrite growth, obstacles concerning material expenses, manufacturability and long-term stability persist. Emerging technologies like hybrid electrolytes and real-time diagnostics are crucial to the next generation of safe and efficient energy storage systems.

Downloads

Download data is not yet available.

References

[1] Wang, J., Ge, B., Li, H., Yang, M., Wang, J., et al. Challenges and progresses of lithium-metal batteries. Chemical Engineering Journal, 2021, 420, 129739.

[2] Nishikawa, K., Mori, T., Nishida, T., Fukunaka, Y., & Rosso, M. Li dendrite growth and Li+ ionic mass transfer phenomenon. Journal of Electroanalytical Chemistry, 2011, 661(1), 84–89.

[3] Yang, H., Fey, E., Bryan Dunning Trimm, Dimitrov, N., & M. Stanley Whittingham. Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency. Journal of Power Sources, 2014, 272, 900–908.

[4] Seong, I. W., Hong, C. H., Kim, B. K., & Yoon, W. Y. The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode. Journal of Power Sources, 2007, 178(2), 769–773.

[5] Arguello, M. E., Labanda, N. A., Calo, V. M., Gumulya, M., Utikar, R., & Derksen, J. Dendrite formation in rechargeable lithium-metal batteries: Phase-field modeling using open-source finite element library. ArXiv.org. 2022, https://arxiv.org/abs/2204.06696?

[6] Ding, T. (2016). In-Situ Optical Microscopic Investigation of the Dendrite Formation on Lithium Anode Under Different Electrolyte Conditions in Li-S Battery. Wisconsin.edu. http://digital.library.wisc.edu/1793/91183

[7] Huang, Y., Yang, H., Gao, Y., Chen, G., Li, Y., Shi, L., & Zhang, D. Mechanism and solutions of lithium dendrite growth in lithium metal batteries. Materials Chemistry Frontiers, 2023, 8(5), 1282–1299.

[8] Haftbaradaran, S. Esmizadeh, & Salvadori, A. Competing effects of current density and viscoplastic deformation on the critical conditions for dendrite growth into solid-state lithium battery electrolytes. International Journal of Solids and Structures, 2022, 254-255, 111852.

[9] Tan, J., & Ryan, E. M. Computational study of electro-convection effects on dendrite growth in batteries. Journal of Power Sources, 2016, 323, 67–77.

[10] Pant, B. R., Ren, Y., & Cao, Y. Dendrite growth and dead lithium formation in lithium metal batteries and mitigation using a protective layer: A Phase-Field Study. ACS Applied Materials & Interfaces, 2024, 16(42), 56947–56956.

[11] Zhao, H., Liao, C., Zhang, C., Wang, L., & Wang, L. Phase-field modeling of lithium dendrite deposition process: When an internal short circuit occurs. Journal of Energy Storage, 2024, 100, 113779.

[12] Amol M. Kale, Seul-Yi Lee, Soo-Jin Park, A comprehensive review of carbon-based air cathode materials for advanced non-aqueous lithium–air batteries, Energy Storage Materials, 2024, 73, 103874.

[13] Wu, Y., Huang, J., Zhang, Z., Chen, D., Yu, H., Ma, F., Zhang, X., & Chen, Y.. Recent advances in functionalized separators for shuttle-free and dendrite-free lithium/sodium-sulfur batteries. Energy Materials, 2025, 5(3).

[14] Du, W., Ang, E. H., Yang, Y., Zhang, Y., Ye, M., & Li, C. C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy & Environmental Science, 2020, 13(10), 3330–3360.

[15] Monroe, C., & Newman, J. The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces. Journal of the Electrochemical Society, 2005, 152(2), A396.

[16] Li, M., Wang, C., Chen, Z., Xu, K., & Lu, J. New Concepts in Electrolytes. Chemical Reviews.

[17] Miao, R., Yang, J., Feng, X., Jia, H., Wang, J., & Yanna Nuli. (2014). Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. Journal of Power Sources, 2020, 271, 291–297.

[18] Dong, N., Yang, G., Luo, H., Xu, H., & Xia, Y. A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries. Journal of Power Sources, 2018, 400, 449–456.

[19] Wei, L., Jin, Z., Lu, J., Guo, Y., Wang, Z., Cao, G., Qiu, J., Wang, A., & Wang, W. In-situ construction of hybrid artificial SEI with fluorinated siloxane to enable dendrite-free Li metal anodes. Journal of Materiomics, 2022, 9(2), 318–327.

[20] Ni, S., Tan, S., An, Q., & Mai, L. Three dimensional porous frameworks for lithium dendrite suppression. Journal of Energy Chemistry, 2020, 44, 73–89.

[21] Zeng, L., Zhou, T., Xu, X. et al. General construction of lithophilic 3D skeleton for dendrite-free lithium metal anode via a versatile MOF-derived route. Sci. China Mater. 2022, 65, 337–348.

[22] Yang, Y., & Zhang, J. Layered nanocomposite separators enabling dendrite-free lithium metal anodes at ultrahigh current density and cycling capacity. Energy Storage Materials, 2021, 37, 135–142.

[23] Karimzadeh, S., Babak Safaei, Yuan, C., & Jen, T.-C. Emerging Atomic Layer Deposition for the Development of High-Performance Lithium-Ion Batteries. Electrochemical Energy Reviews, 2023, 6(1), 1-50.

Downloads

Published

28-10-2025

How to Cite

WANG, L. (2025). Current Approaches Enhancing the Elimination of Dendrite Formation in Batteries. Highlights in Science, Engineering and Technology, 157, 12-19. https://doi.org/10.54097/xhjz6s18