The Relationship Between the Molecular Structure of Surfactants and Their Efficiency in Enhancing Cleanability and Biocompatibility in Skincare Products

Authors

  • Mien Dong St Catherine’s School, Bramley, Guildford, United Kingdom

DOI:

https://doi.org/10.54097/j2kga845

Keywords:

Surfactants, Molecular Structure, Interfacial Tension, Cosmetic Science, Biosurfactants.

Abstract

Surfactant molecular architecture—head-group charge/size, alkyl chain length/branching, and ethoxylation degree—dictates interfacial behavior and skin compatibility. We systematically reviewed studies (2015–2025; PubMed, Web of Science, ScienceDirect) comparing anionic, cationic, zwitterionic, nonionic, and biosurfactants in cosmetic-relevant systems. Evidence shows (i) cleansing efficacy scales with packing parameter and critical micelle concentration (CMC), while irritation correlates with protein denaturation indices and transepidermal water loss (TEWL); (ii) anionics with C_12–C_14 chains and high zein values cleanse efficiently but raise irritation risk; (iii) amphoterics (e.g., CAPB) and nonionics (e.g., Laureth-23, APGs) reduce TEWL increase by 20–40% versus SLS at matched soil removal; (iv) biosurfactants offer superior biodegradability but face cost and batch-to-batch variability. We outline structure-guided formulation rules—optimized HLB (10–14) and mixed micelles with amphoterics—to balance cleansing and dermatological compatibility.

Downloads

Download data is not yet available.

References

[1] Shaban, S. M., Kang, J., & Kim, D.-H. (2020). Surfactants: Recent advances and their applications. Composites Communications, 22, 100537. https://doi.org/10.1016/j.coco.2020.100537. DOI: https://doi.org/10.1016/j.coco.2020.100537

[2] Das, B., Haque, M. E., Kalita, J., Bhattacharjee, A., Devi, A., & Roy, A. S. (2022). Comprehensive review on applications of surfactants in vaccine formulation, therapeutic and cosmetic pharmacy and prevention of pulmonary failure due to COVID-19. Chemistry Africa, 5 (3), 459–480. https://doi.org/10.1007/s42250-022-00341-2. DOI: https://doi.org/10.1007/s42250-022-00345-0

[3] Anestopoulos, I., Kiousi, D. E., Klavaris, A., Mourtzinos, I., Galanis, A., & Koutsoulas, C. (2020). Surface active agents and their health-promoting properties: Molecules of multifunctional significance. Pharmaceutics, 12 (7), 688. https://doi.org/10.3390/pharmaceutics12070688. DOI: https://doi.org/10.3390/pharmaceutics12070688

[4] Kaur, P. (2025). Role of surfactants in cosmetic industry. International Journal of Science and Research Archive, 14 (1), 1599–1604. https://doi.org/10.30574/ijsra.2025.14.1.0123. DOI: https://doi.org/10.30574/ijsra.2025.14.1.0136

[5] Navare, B., Thakur, S., & Nakle, S. (2019). A review on surfactants: Role in skin, irritation, SC damage, and effect of mild cleansing over damaged skin. International Journal of Advanced Research in Ideas, Innovations and Technology, 5, 1077–1081. https://doi.org/10.13140/RG.2.2.14236.74887.

[6] Mirzakimov, U. Z., Yusupova, M. K., Khudayberdiev, S. A., Akhmedov, K. B., & Turaev, B. K. (2023). Preparation and study of the properties of sulfosuccinate esters of cyclic alcohols for use in the storage and transport of natural gas in hydrate form. Chemistry and Technology of Fuels and Oils, 59 (4), 712–717. https://doi.org/10.1007/s10553-023-01538-1. DOI: https://doi.org/10.1007/s10553-023-01574-w

[7] Parsa, M., Maghsoudi, A., & Banat, I. M. (2019). Foam in pharmaceutical and medical applications. Current Opinion in Colloid & Interface Science, 44, 153–167. https://doi.org/10.1016/j.cocis.2019.09.005. DOI: https://doi.org/10.1016/j.cocis.2019.10.007

[8] Salomon, G., & Giordano-Labadie, F. (2022). Surfactant irritations and allergies. European Journal of Dermatology, 32 (6), 677–681. https://doi.org/10.1684/ejd.2022.4422. DOI: https://doi.org/10.1684/ejd.2022.4290

[9] Okasaka, M., Yamaguchi, Y., & Mori, H. (2019). Evaluation of anionic surfactants effects on the skin barrier function based on skin permeability. Pharmaceutical Development and Technology, 24 (1), 99–104. https://doi.org/10.1080/10837450.2018.1429041. DOI: https://doi.org/10.1080/10837450.2018.1425885

[10] Morris, S. A. V., Viljoen, J. M., Ngobeni, R., & Du Plessis, J. (2019). Mechanisms of anionic surfactant penetration into human skin: Investigating monomer, micelle and submicellar aggregate penetration theories. International Journal of Cosmetic Science, 41 (1), 55–66. https://doi.org/10.1111/ics.12453. DOI: https://doi.org/10.1111/ics.12511

[11] Gonçalves, R. A., Holmberg, K., & Lindman, B. (2023). Cationic surfactants: A review. Journal of Molecular Liquids, 375, 121335. https://doi.org/10.1016/j.molliq.2023.121335. DOI: https://doi.org/10.1016/j.molliq.2023.121335

[12] Rashed, M. S., & AlRashidi, B. M. (2024). Study of age-related changes in the physicochemical properties of cocamidopropyl betaine (CAPB): A case study of the production of cocamidopropyl betaine on an industrial scale. Journal of Surfactants and Detergents. https://doi.org/10.1002/jsde.1276.

[13] Schwartz, K. (2023). An introduction to chemistry in cosmetics. Cosmetics Science Journal. https://doi.org/10.1007/csj.2023.001.

[14] Wojcieszak, M., Kowalczyk, A., Adamus, J., et al. (2025). Evaluation of nonionic surfactant-based emulgels as a prospective approach for skincare products. Journal of Molecular Liquids, 127702. https://doi.org/10.1016/j.molliq.2025.127702. DOI: https://doi.org/10.1016/j.molliq.2025.127702

[15] Dick, A., Stolz, H. J., & Sonsmann, F. K. (2024). Mild but effective skin cleansing—Evaluation of laureth‐23 as a primary surfactant. International Journal of Cosmetic Science, 46 (3), 403–413. https://doi.org/10.1111/ics.12848. DOI: https://doi.org/10.1111/ics.12940

[16] Fernandes, N. D. A. T., Simões, L. A., & Dias, D. R. (2023). Biosurfactants produced by yeasts: Fermentation, screening, recovery, purification, characterization, and applications. Fermentation, 9 (3), 207. https://doi.org/10.3390/fermentation9030207. DOI: https://doi.org/10.3390/fermentation9030207

[17] Karnwal, A., Kumar, A., Yadav, A. N., et al. (2023). Microbial biosurfactant as an alternate to chemical surfactants for application in cosmetics industries in personal and skin care products: A critical review. BioMed Research International, 2023, 2375223. https://doi.org/10.1155/2023/2375223. DOI: https://doi.org/10.1155/2023/2375223

[18] Sharon, A. B., Okeke, B. C., Onwosi, C. O., et al. (2023). Statistical optimization strategies on waste substrates for solving high-cost challenges in biosurfactants production: A review. In IOP Conference Series: Earth and Environmental Science (Vol. 1197, No. 1, p. 012010). IOP Publishing. https://doi.org/10.1088/1755-1315/1197/1/012010. DOI: https://doi.org/10.1088/1755-1315/1197/1/012004

Downloads

Published

28-10-2025

How to Cite

Dong, M. (2025). The Relationship Between the Molecular Structure of Surfactants and Their Efficiency in Enhancing Cleanability and Biocompatibility in Skincare Products. Highlights in Science, Engineering and Technology, 157, 212-216. https://doi.org/10.54097/j2kga845