Study on Catalysts and Bipolar Plates in Proton Exchange Membrane Fuel Cells for enhancing properties

Authors

  • Jiawei Wen Zijin School of Geology and Mining Fuzhou University, Fuzhou University, Fuzhou, 350108
  • Xiang Gao School of materials science and engineering, Jilin University, Changchun, China, 130022
  • Yu Fu College of Materials and Chemistry, China Jiliang University, Hangzhou, China, 310018

DOI:

https://doi.org/10.54097/q7agyn62

Keywords:

PEMFC, Non-platinum catalysts, Bipolar plate optimization, Flow field configuration.

Abstract

Currently, proton exchange membrane fuel cells are a highly efficient clean energy conversion technology, and their performance optimisation depends on the synergistic innovation of catalysts and bipolar plates. This paper systematically studies strategies for enhancing the activity of non-platinum catalysts and the synergistic optimisation mechanism of bipolar plate flow field and materials. The design of atomically dispersed Fe-N-C sites, heteroatom doping, and the construction of porous carbon carriers to create high-density active centres significantly enhance the kinetics of the oxygen reduction reaction. The Fe-N-C system can achieve a half-wave potential of 0.78–0.92 V in acidic media, and its peak power density is 890 mW/cm², approaching the level of commercial Pt/C. The new square baffle channel and symmetrical serpentine flow field can increase power density by 12.1–22.9%, while the metal foam structure reduces reactant consumption by 30%. CrAlCN and TiZrC coatings reduce interfacial contact resistance to 1.60 mΩ·cm², achieve corrosion current density at the 10-8 A·cm-2 level, and attain a water contact angle of 121.7°±1.0°. Research indicates that regulating the electronic state of non-platinum catalyst active sites and optimising mass transfer and electrical conductivity in bipolar plates are important to overcoming performance bottlenecks in PEMFCs, providing theoretical support and engineering pathways for low-platinum fuel cell technology.

Downloads

Download data is not yet available.

References

[1] P. Wang, X. Chen, Q. Zhou, Configuration optimization for flow field of PEM fuel cells inspired by the fluid-directed properties of the feather of the bow and arrow, Fuel 404 (2026) 136394. DOI: https://doi.org/10.1016/j.fuel.2025.136394

[2] S. Liu, C. Zhao, J. Li, N. Li, Z. Hu, S. Chen, Excellent proton transfer in proton exchange membrane at low humidity accelerated by sulfonated polyhedral oligosilsesquioxane, Renewable Energy 256 (2026) 123982. DOI: https://doi.org/10.1016/j.renene.2025.123982

[3] A. Rezaei, M. Rahimi-Esbo, K.D. Firouzjaei, E. Alizadeh, Experimental and numerical investigation on the oxygen distribution in the cathode section of a PEMFC stack, Renewable Energy 256 (2026) 123996. DOI: https://doi.org/10.1016/j.renene.2025.123996

[4] Y. Yu, Q. Yu, R. Luo, S. Chen, J. Yang, F. Yan, Study on the relationship between lifetime and flow channel in proton exchange membrane fuel cells, Renewable Energy 256 (2026) 124057. DOI: https://doi.org/10.1016/j.renene.2025.124057

[5] M.H. Elfar, M. Fawzi, A.S. Serry, M. Elsakka, M. Elgamal, A. Refaat, Optimal parameters identification for PEMFC using autonomous groups particle swarm optimization algorithm, International Journal of Hydrogen Energy 69 (2024) 1113-1128. DOI: https://doi.org/10.1016/j.ijhydene.2024.05.068

[6] C.K.T. Weatherly, H. Ren, M.A. Edwards, L. Wang, H.S. White, Coupled Electron- and Phase-Transfer Reactions at a Three-Phase Interface, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 141 (45) (2019) 18091-18098. DOI: https://doi.org/10.1021/jacs.9b07283

[7] L.C. Xia, M. Ni, Y.W. Dai, K.Q. Zheng, M.X. Li, Numerical study of triple-phase boundary length in high-temperature proton exchange membrane fuel cell, INTERNATIONAL JOURNAL OF ENERGY RESEARCH 46 (2) (2022) 1998-2010. DOI: https://doi.org/10.1002/er.7223

[8] Z.Z. Du, J. Wang, J. Wang, F. Yu, J.L. Li, X.D. Wang, Research progress of key materials in proton exchange membrane fuel cell br, CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING 50 (12) (2022) 35-50.

[9] G.B. Zhang, Z.G. Qu, W.Q. Tao, Y.T. Mu, K. Jiao, H. Xu, Y. Wang, Advancing next-generation proton-exchange membrane fuel cell in multi transfer, JOULE 8 (2) (2024) 45-63. DOI: https://doi.org/10.1016/j.joule.2023.11.015

[10] Y. Nie, Z. Shi, B.W. Li, Q. Meyer, C. Zhao, Engineering Platinum-Based Alloy Catalysts for Oxygen Reduction Reaction in Hydrogen Fuel Cells: A Mini-Review, ENERGY & FUELS 39 (34) (2025) 16049-16064. DOI: https://doi.org/10.1021/acs.energyfuels.5c02806

[11] P. Lin, J. Sun, C. He, M. Wu, T. Zhao, Modeling proton exchange membrane fuel cells with platinum-group-metal-free catalysts, APPLIED ENERGY 360 (2024). DOI: https://doi.org/10.1016/j.apenergy.2024.122765

[12] L. Du, G.X. Zhang, S.H. Sun, Proton Exchange Membrane (PEM) Fuel Cells with Platinum Group Metal (PGM)-Free Cathode, AUTOMOTIVE INNOVATION 4 (2) (2021) 131-143. DOI: https://doi.org/10.1007/s42154-021-00146-0

[13] D.D. Sun, Z. Wang, M. Jin, J.F. Liu, X. Zhang, S.B. Zhang, H.M. Zhang, Optimizing Ionomer Coverage in Solid Carbon-Supported Catalyst toward High Performance for Proton Exchange Membrane Fuel Cells, ACS APPLIED ENERGY MATERIALS 7 (9) (2024) 4132-4140. DOI: https://doi.org/10.1021/acsaem.4c00463

[14] C.Y. Zhu, Y.J. Xing, Effect of High Potential on Carbon Corrosion of Cathode Catalyst Layer in Proton Exchange Membrane Fuel Cells, JOURNAL OF THE ELECTROCHEMICAL SOCIETY 172 (3) (2025). DOI: https://doi.org/10.1149/1945-7111/adbec2

[15] P. Sun, K. Qiao, D. Li, X. Liu, H. Liu, L. Yang, H. Xu, Z. Zhuang, Y. Yan, D. Cao, Designing oxygen-doped Fe-N-C oxygen reduction catalysts for proton- and anion-exchange-membrane fuel cells, Chem Catalysis 2 (10) (2022) 2750-2763. DOI: https://doi.org/10.1016/j.checat.2022.09.009

[16] J. Cui, J. Min, H. Wang, J. Shui, L. Peng, Z. Kang, J. Liu, Q. Chen, S. Bai, Y. Liu, Elongated Fe–N–C containing trace atomic Co dopants for high power density PEMFCs, Industrial Chemistry & Materials 2 (4) (2024) 634-643. DOI: https://doi.org/10.1039/D4IM00043A

[17] S. Akula, M. Mooste, B. Zulevi, S. McKinney, A. Kikas, H.-M. Piirsoo, M. Rähn, A. Tamm, V. Kisand, A. Serov, Mesoporous textured Fe-NC electrocatalysts as highly efficient cathodes for proton exchange membrane fuel cells, Journal of Power Sources 520 (2022) 230819. DOI: https://doi.org/10.1016/j.jpowsour.2021.230819

[18] J. Tao, X. Wang, M. Xu, C. Liu, J. Ge, W. Xing, Non-noble metals as activity sites for ORR catalysts in proton exchange membrane fuel cells (PEMFCs), Industrial Chemistry & Materials 1 (3) (2023) 388-409. DOI: https://doi.org/10.1039/D3IM00002H

[19] W. Kiciński, S. Dyjak, M. Gratzke, W. Tokarz, A. Błachowski, Platinum group metal-free Fe−N−C catalysts for PEM fuel cells derived from nitrogen and sulfur doped synthetic polymers, Fuel 328 (2022). DOI: https://doi.org/10.1016/j.fuel.2022.125323

[20] J. Baek, H. Son, S.W. Joo, M. Kim, G. Lee, Bimetallic zeolitic imidazole framework-derived sulfur-doped porous carbon as highly efficient catalysts for oxygen reduction reaction in proton exchange membrane fuel cells, Applied Surface Science 642 (2024). DOI: https://doi.org/10.1016/j.apsusc.2023.158609

[21] T. Wilberforce, A.G. Olabi, D. Monopoli, M. Dassisti, E.T. Sayed, M.A. Abdelkareem, Design optimization of proton exchange membrane fuel cell bipolar plate, Energy Conversion and Management 277 (2023). DOI: https://doi.org/10.1016/j.enconman.2022.116586

[22] Y. Wei, L. Xu, Y. Li, J. Tan, Better Electrochemical Performance of PEMFC with a Symmetrical Serpentine Flow Field Bipolar Plate, International Journal of Electrochemical Science 17 (12) (2022). DOI: https://doi.org/10.20964/2022.12.20

[23] T. Wilberforce, O. Ijaodola, A. Baroutaji, E. Ogungbemi, A.G. Olabi, Effect of Bipolar Plate Material on Proton Exchange Membrane Fuel Cell Performance, Energies 15 (5) (2022). DOI: https://doi.org/10.3390/en15051886

[24] L. Liao, M. Li, Y. Yin, X. Tan, R. Du, Q. Zhong, F. Zeng, Ti-mesh bipolar plate design and optimization for enhanced PEM electrolyzer performance in water splitting, International Journal of Hydrogen Energy 64 (2024) 981-989. DOI: https://doi.org/10.1016/j.ijhydene.2024.03.331

[25] J. Jin, X. Kou, X. Tian, Y. Tao, X. Xu, H. Yang, Y. Mi, Investigation of corrosion protection with conductive chromium-aluminum carbonitride coating on metallic bipolar plates, Vacuum 213 (2023). DOI: https://doi.org/10.1016/j.vacuum.2023.112084

[26] T. Ma, H. Guo, Y. Tian, J. Qi, N. Yao, TiZrC-coated 316 L stainless steel bipolar plates for proton exchange membrane fuel cells, Materials Today Communications 42 (2025). DOI: https://doi.org/10.1016/j.mtcomm.2024.111170

[27] C.-J. Hung, W.-J. Chen, C.-A. Lin, H.-R. Shiu, B.-H. Chen, Effect of Metallic Bipolar Plates Fillet Radii on Fuel Cell Performance, Energies 14 (21) (2021). DOI: https://doi.org/10.3390/en14217109

[28] Y. Li, Y. Liu, Q. Liang, L. Han, N. Wan, Z. Guo, Design and performance evaluation of an air-cooled PEMFC stack with metallic bipolar plates, International Journal of Hydrogen Energy 60 (2024) 324-332. DOI: https://doi.org/10.1016/j.ijhydene.2024.02.083

Downloads

Published

28-10-2025

How to Cite

Wen, J., Gao, X., & Fu, Y. (2025). Study on Catalysts and Bipolar Plates in Proton Exchange Membrane Fuel Cells for enhancing properties. Highlights in Science, Engineering and Technology, 157, 200-211. https://doi.org/10.54097/q7agyn62